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Abstract The fully developed laminar mixed convection flow in inclined tubes subject to axially
and circumferentially uniform heat flux has been studied numerically for a Boussinesq fluid. Dual
solutions characterized by a two- and a four-vortex secondary flow structure in a cross-section
normal to the tube's longitudinal axis have been found for different combinations of the Grashof
number Gr and of the tube inclination � for all Prandtl numbers between 0.7 and 7. In the two-
parameter space defined by Gr and � dual solutions occur: at a given �, if the Grashof number
exceeds a critical value Gr` (for horizontal tubes Gr` is approximately 5.5 � 105, 1.7 � 105 and
1.7 � 104 respectively for Pr = 0.7, 7 and 70); at a given Gr, if the tube inclination is below a
critical value �c (for Gr = 106 this critical angle is approximately 62.5ë and 83.5ë respectively for
Pr = 0.7 and 7). Numerical experiments carried out for developing flows indicate that the two-
vortex solution is the only stable flow structure.

1. Introduction
The problem of combined forced and free laminar convection in heated tubes
has been the subject of many studies over the past decades since this flow
situation is encountered in many engineering applications, such as solar
collectors, pipelines and nuclear reactors. Under the effects of buoyancy, hot
fluid rises along the tube wall and descends in the central part of the cross-
section. This secondary motion destroys the symmetry of the primary axial
flow. Thus, the resulting axial velocity profile is not parabolic and the
isotherms are very different from the concentric circles corresponding to pure
forced convection flow (Coutier, 1983). Furthermore, the Nusselt number and
the friction coefficient depend on the Reynolds, Prandtl and Grashof numbers
as well as on the tube inclination.

The characteristics of this complex flow field have been studied both
experimentally and numerically. An extensive review of publications on this
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subject has been compiled by Kakac et al. (1987). Among the experimental
investigations, the publications by Mori and Futagami (1967), Petukhov et al.
(1967, 1969), Morcos (1974), Barozzi et al. (1985) and Bilodeau et al. (1997)
present a description of the flow field as well as useful correlations for the axial
evolution of the Nusselt number in terms of the Rayleigh number and for
transition between the laminar and turbulent regimes. Early analytical studies
used the perturbation technique (Morton, 1959), which is only valid for very
small Rayleigh numbers. On the other hand, the boundary layer method used
by Siegwarth (1968) seems to be appropriate only for relatively large Rayleigh
numbers. Early numerical studies using the finite differences method were
carried out by Newel and Bergles (1970) and by Collins (1971) for horizontal
and vertical flows respectively. More recent projects using modern numerical
algorithms and fast computers with extensive memory have investigated the
characteristics of developing flows in isothermal tubes (Choudhury and
Patankar, 1988) and in tubes with a uniform heat flux (Orfi et al., 1997). They
have also studied the effects of wall conduction in vertical (Heggs et al., 1990) or
inclined (Laouadi et al., 1994) tubes, those of axial diffusion in low Peclet
number flows (Wang et al., 1994) as well as those of temperature dependent
fluid properties (Nesreddine et al., 1997).

Several investigators have observed the close similarity between the
governing equations of the mixed convection flow in straight heated ducts and
those for the Dean problem, i.e. laminar flow in a curved duct. The dynamic
parameters for these two problems are, respectively, the Grashof and Dean
numbers. In both cases, for small values of the dynamic parameters, the two-
dimensional flow structure in a plane normal to the longitudinal axis of the
duct consists of two symmetrical counter-rotating vortices. However, as the
dynamic parameter increases, this two-cell flow structure becomes unstable
and it eventually evolves into a four-cell structure. For a certain range of values
of the dynamic parameters, the two flow structures coexist, that is the PDEs
representing the flow field have two distinct solutions. Such a flow bifurcation
for the Dean problem has been treated in detail by Nandakumar and Masliyah
(1982), Winters (1987) and Bara et al. (1992). With regard to the mixed
convection problem, Patankar et al. (1978) were probably the first to predict the
transition from the two-cell to the four-cell structure for a Boussinesq fluid with
Pr = 5 in a horizontal non-uniformly heated circular tube. A similar transition
was observed by Chou and Hwang (1984) for a uniformly heated rectangular
duct. However, neither of these last two studies detected the existence of dual
solutions. Choi and Choi (1992) re-examined Patankar's non-uniformly heated
flow problem and established the existence of dual solutions for high values of
the Grashof numbers and for all Prandtl numbers between 0.2 and 10.

For fully-developed laminar mixed convection in horizontal heated ducts,
Nandakumar et al. (1985) have shown that bifurcation occurs beyond a critical
Grashof number Gr` in circular, semi-circular and rectangular geometries. In
the case of the rectangular duct, they also found that the two-cell structure
disappears when the Grashof number exceeds a second critical value Gru
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(where Gru > Gr`). Thus, for this particular geometry, the friction factor and the
Nusselt number show a hysteresis behavior as the Grashof number is
gradually increased and then decreased. The variation of the two critical
Grashof numbers with the duct aspect ratio has a strong resemblance to the
tilted cusp observed by Benjamin (1978a,b) and by Benjamin and Mullin (1982)
in their studies of Taylor vortices. Recently, the bifurcation structure of the
flow through a horizontal heated rectangular duct was re-examined in detail by
Nandakumar and Weinitschke (1991). In addition to the primary branch with
two limit points and a hysteresis behavior reported earlier, they obtained a
much richer solution structure with up to five solutions (symmetric and
asymmetric) over certain ranges of the Grashof number. For the case of the
circular horizontal tube, the hysteresis behavior has not been established,
probably because the second critical value Gru is higher than the range
examined by Nandakumar et al. (1985). Furthermore, their results for this
geometry indicate that the two- and four-vortex solutions correspond to very
small differences in the values of the friction coefficient and of the Nusselt
number.

It is important to note that all the previously mentioned papers reporting the
existence of two different flow structures for the mixed convection problem are
concerned with horizontal ducts. Furthermore, the two papers by Nandakumar
et al. (1985, 1991) which have studied the bifurcation structure of such flows
have used the specific thermal boundary condition of a uniform heat flux in the
axial direction and a uniform temperature around the duct's periphery. This
condition corresponds to the case of ducts with low thermal resistance in the
peripheral direction (thick walls and/or large ratios of wall-to-fluid
conductivities). On the other hand, the present authors have considered inclined
circular tubes with axially and circumferentially uniform heat flux (this
condition corresponds to thin walls and/or small ratios of wall-to-fluid
conductivities). They reported the existence of dual solutions for this problem
and have compared the two- and four-cell structures for the flow of air for one
particular combination of Re, Gr and tube inclination (Orfi et al., 1994).

In the present paper, the problem of bifurcation for fully-developed laminar
mixed convection in inclined tubes with axially and circumferentially uniform
heat flux at the solid-fluid interface is investigated thoroughly. The influence of
the Grashof and Prandtl numbers as well as that of the tube inclination on the
flow characteristics, the friction coefficient and the Nusselt number are
presented and discussed. The state diagrams showing the domains of existence
of dual solutions have also been determined.

2. Governing equations
We consider steady, laminar, fully-developed flow with combined forced and
free convection within a straight tube of invariable circular cross-section
inclined at an angle � with respect to the horizontal. The fluid is subjected to a
circumferentially and axially uniform heat flux q at the wall-fluid interface
(Figure 1). The thermophysical properties of the fluid are assumed to be
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constant except for the fluid density �
0

in the buoyancy force which is
linearized as follows in terms of the temperature T

0
:
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Here �
0
o; �

0
o are respectively the density and thermal expansion coefficient of the

fluid corresponding to the fixed reference temperature T
0
o.

The viscous dissipation is considered to be negligible and since the flow is
assumed to be fully developed the following conditions prevail:
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0
o the specific heat
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o and T
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are respectively the fluid bulk temperature and

its average axial velocity.
Furthermore, since the flow is assumed to be fully developed, the axial

diffusion terms in the momentum equations are identically zero. Therefore, since
conditions in one cross-section do not influence those in any other upstream one,
the fluid pressure decomposition used extensively for axially parabolic flows
(Patankar et al., 1978; Bara et al., 1992) can also be assumed to apply here:
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Schematic
representation of the
geometry and coordinate
system
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where p
0
1 is the pressure variation around the cross-sectional average pressure

p
0
2. The validation of this approach is provided later by comparing calculated

results with analytical solutions for pure forced flow and with experimental
results for mixed convection. The following modified pressures are then
introduced by combining p

0
1 and p

0
2 with the appropriate gravitational

contributions:
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where �
0
is the fluid density corresponding to the bulk temperature T

0
.

Next, the following dimensionless quantities are introduced:
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With these definitions, the diffusion of heat in the axial direction is identically
zero and the non-dimensional governing equations in cylindrical coordinates
are:
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The source terms in the momentum equations are:
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It can therefore be seen that the problem under study is characterized by four
independent parameters, namely the Reynolds, Prandtl and Grashof numbers
as well as the tube inclination �with
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Finally, the flow field is assumed to be symmetrical with respect to the vertical
diameter. This assumption is supported by the experimental results of Mori
and Futagami (1967) among others. It has been used to study fully developed
mixed convection by Patankar et al. (1978) and Choi and Choi (1992) among
others. It has also been used extensively for bifurcation studies of fully
developed flow in curved ducts (Bara et al., 1992 ; Nandakumar and Masliyah,
1982) and of fully developed mixed convection in horizontal ducts
(Nandakumar et al., 1985, 1991). It is of course true that this imposed symmetry
does not allow the calculation of possible asymmetric solutions (such as those
obtained by Winters (1987) for the Dean problem). However, it is believed that
despite this limitation, the present study provides useful insights on bifurcation
in inclined tubes for which no such results have been previously published to
the best of our knowledge. In view of this assumption, only half of the circular
cross-section needs to be considered. The following boundary conditions can
then be specified:

. at the wall-fluid interface, the usual nonslip conditions prevail and the
dimensionless radial gradient of the temperature is equal to unity to
satisfy the condition of uniform heat flux:
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at r � 0:5; Vr � V� � Vz � 0 and
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. along the vertical diameter the symmetry condition applies:
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In addition, the overall mass balanceZ0:5
z�0

Z�
��0

Vzrd�dr � �
8

�17�

must be satisfied.
It is important to note that the axial gradient of the cross-sectional average

pressure in equation (9) is, according to the assumption of fully-developed flow,
a constant for a given set of values of the governing parameters Gr, Pr, Re and
�. However, its value remains unknown and must be computed as part of the
solution.

3. Method and accuracy of solution
The numerical method employed to solve the coupled non-linear system of
governing equations (6) through (10) subject to the boundary conditions
expressed by equations (16) and (17) is based on the SIMPLE-C method (van
Doormal and Raithby, 1984). The governing equations were discretized on
staggered grids by integrating them over finite control volumes, using the
power-law scheme (Patankar, 1980) to approximate the combined convective-
diffusive terms. This integration process results in a system of algebraic
equations which was successfully solved using the line-by-line technique
(Patankar, 1980). The constant axial gradient of the cross-sectional average
pressure is determined using an iterative procedure to satisfy the overall mass
balance expressed by equation (17). In the present study, a trial-and-error
secant-type method suggested by Laouadi et al. (1994) was adopted for the
determination of the correct value of dP2/dZ.

It should be noted that the singular point at r = 0 does not pose any
particular difficulties since, with the staggered grid used here, values of VZ , T
and P1 are calculated at the center of the pie-shaped elements whose apex is at
center of the cross-section. Furthermore, the radial velocity at r = 0 does not
contribute any fluxes since the corresponding area for these pie-shaped
elements is zero.

Several different grids have been tested to ensure that the numerical results
are independent of the number and distribution of the grid points employed in
the discretization process. Using the average Nusselt number as the basis for
comparisons, a grid with 36 and 32 points along the circumferential and radial
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directions respectively was finally adopted (see Table I and Orfi (1995) for
additional details). Along the radial direction, the spacing is non-uniform with
grid lines highly packed near the wall.

In order to validate the model and the solution procedure, the computer
program was first used to simulate pure forced flow (i.e. Gr = 0). Results for the
axial velocity and temperature profiles were in excellent agreement with the
corresponding analytical solutions. The relative difference between the
computed and analytical values of the average Nusselt number was less than
0.1 percent (Orfi, 1995). Furthermore, some calculated results for mixed
convection within horizontal and vertical tubes have been compared with
previously published values. Table II shows such a comparison for the
calculated Nusselt number for air and water and three different Grashof
numbers. The present results are within � 5 percent of Van Dyke's values
(1990) for horizontal tubes and within � 4 percent of Petukhov et al. (1969)
values for vertical tubes. In view of these results we conclude that the
assumptions used to formulate the mathematical model are valid and that the
numerical method is reliable.

4. Results and discussion
All the results presented in this paper were calculated for Re = 500 while the
three other independent parameters (Gr, Pr and tube inclination �) were varied.
As stated previously, mixed convection in a straight tube constitutes a
dissipative dynamic system for which the control, or forcing, parameter is the
Grashof number. At low values of the latter, a typical flow structure in a cross-
section normal to the longitudinal axis of the tube consists of two symmetrical

Table I.
Grid sensitivity
analysis for Pr = 7 and
� = 0ë

Grid
Gr = 5 � 104

(2 cells)
Gr = 2.5 � 105

(4 cells)
Gr = 106

(4 cells)
Lower critical Grashof

number

16 � 16 7.94 9.70 11.43 7.5 � 104 < Gr` < 105

28 � 24 7.80 9.43 10.95 105 < Gr` < 2.5 � 105

36 � 32 7.76 9.35 10.81 105 < Gr`< 2.5 � 105

Table II.
Comparison of the
calculated average
Nusselt number with
previous results

Gr This work
Petukhov et al.

(1967/69)
Rustum and

Soliman (1988)
Van Dyke

(1990)
Mori et al.

(1967)

Pr = 7 104 6.27 5.57 6.74 6.02 ±
105 8.43 8.43 8.58 8.18

� = 0ë 106 10.64 12.75 11.87 11.13 ±
Pr = 0.7 105 5.95 ± ± 6.17 5.72

106 7.87 ± ± 8.24 8.43
� = 0ë 107 10.54 ± ± 11.14 12.71
Pr = 7 104 4.44 4.46 ± ± ±

105 4.94 5.14 ± ± ±
� = 0ë 106 7.90 7.97 ± ± ±
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counter-rotating vortices. But for values of the Grashof number exceeding a
critical value Gr` the asymptotic state of the flows can change into a four-
vortex structure.

Figure 2 shows the calculated flow and thermal characteristics of these two
flow structures for Gr = 106, Pr = 0.7 and � = 0ë. Despite the fact that the
thermal boundary condition is different from that used by Nandakumar et al.
(1985), the main characteristics of the two flow structures are qualitatively
similar. Thus, for the two-vortex structure, the axial velocity and temperature
distributions show a boundary layer behavior with pronounced radial
gradients near the bottom of the cross-section. The secondary motion is
particularly intense near the lower half of the interface. In the upper half of the
cross-section the secondary velocities are very small and heat transfer takes
place principally by conduction so that the isotherms are essentially parallel. It
should be noted, however, that the vortex center is, in the present case, situated
in the lower half of the cross-section, while for the conditions studied by
Nandakumar et al. (1985) it was slightly above the horizontal diameter. On the
other hand, the four-vortex solution is characterized by the presence of two
additional symmetrical counter-rotating vortices in the lower part of the cross-
section. This flow field no longer exhibits the boundary layer structure of the
two-vortex solution and could therefore not be predicted by a boundary layer
analysis such as that used by Siegwarth (1968). It is interesting to observe that
the presence of the additional two vortices modifies considerably the axial
velocity and temperature contours, especially in the lower part of the tube.
Thus, the location of the maximum axial velocity clearly shifts upwards
(Figure 3a). It should be noted that the value of this maximum is, for both flow
structures, below the value of 2.0 corresponding to pure forced flow and that it
is lower for the four-cell structure. Similarly, the temperature profile along the
vertical diameter (Figure 3b) is significantly different between the two- and
four-vortex solutions. The minimum temperature occurs closer to the tube axis
and is not as low in the case of the four-vortex solution.

4.1 Effects of the Grashof number
Figure 4 compares the structure of the flow and thermal fields corresponding to
the four-vortex solution with water (Pr = 7.0) in horizontal tubes for three
different Grashof numbers. As the latter increases, the upper vortices decrease
slightly in volume and move toward the lower wall. This behavior, which is
attributed to the increase of natural convection effects, has also been observed
in the case of the two-vortex solution (Siegwarth, 1968; Orfi, 1995).
Concurrently, the lower cells move closer to the vertical diameter. Furthermore,
as the Grashof number increases, the intensity of the secondary motion in both
the upper and lower vortices increases. Thus, the corresponding extreme
values of the stream function move further and further apart: they are (7.09, ±
4.81), (11.10, ±7.69) and (21.5, ±15.3) respectively for Gr = 2.5� 105, 106 and 107.
It is also observed that despite the increase in the value of Gr the shape of the
isotherms remains essentially unchanged, except for a very narrow region near
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Figure 2.
Dual solutions for Pr =
0.7, Gr = 106 and � = 0ë
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the bottom of the tube. Regarding the axial velocity field it is noticed that the
contours become more distorted, especially in the lower part of the tube where
the new vortices are located, as the Grashof number increases. However, this
axial field distortion appears to be less important than in the case of air (Figure
2) due to the higher viscosity of the water.

The wall shear stress and the Nusselt number variation with the Grashof
number for both air (Pr = 0.7) and water (Pr = 7.0) are shown in Figure 5 (note
that �o = 8 and Nuo = 4.36 are the values corresponding to pure forced flow).
The flow bifurcation does indeed exist beyond a critical Grashof number, Gr`.
Thus for cases with low heating rates (Gr < Gr`) only the well-known two-
vortex solution exists while for high heating rates (Gr > Gr`) the two-cell and
four-cell solutions coexist. The results of this figure indicate that this critical
Grashof number decreases with increasing Prandtl number. Thus, Gr` has been
determined to be approximately 5.5 � 105, 1.7 � 105 and 1.7 � 104 respectively
for Pr = 0.7, 7 and 70. This observation is consistent with similar behaviors
established by Nandakumar et al. (1985) for both semi-circular and circular
ducts, as well as by Nandakumar and Weinitschke (1991) for rectangular ducts.
It can be explained by the fact that as Pr increases (i.e. as the fluid thermal
diffusivity becomes relatively less important compared to its momentum
diffusivity) the thermal boundary layer becomes thinner and the fluid
temperature in the central part of the tube becomes more uniform. Therefore
the secondary flow in this part of the tube is weakened with the increase of Pr.
It therefore becomes less stable and more susceptible to convert from a two-cell
to a four-cell structure.

It is also observed in Figure 5 that the circumferentially averaged wall
friction and heat transfer coefficients for the four-cell structure are higher due
to a more intense agitation of the fluid. However, the differences from the
corresponding results of the two-cell solution are not significant. This behavior
is qualitatively similar to that observed by Nandakumar et al. (1985) for a
different thermal boundary condition.

Finally, it is important to explain the procedure used to obtain the dual
solutions. The procedure which is normally employed (Nandakumar et al.,
1985; Choi and Choi, 1992) can be summarized as follows. Using the analytical
solution for pure forced flow as the starting condition at the beginning of the
iterative procedure, a two-vortex solution is obtained for a relatively low
Grashof number, say Gr = 103. Then, using this two-vortex flow field as the
new starting condition, a solution corresponding to a slightly higher Grashof
number, say Gr = 5 � 103, is computed. In this manner, flow fields with the
two-cell structure can be obtained for ever increasing Grashof numbers.
However, beyond a critical value Gru the two-cell structure is suddenly
replaced by the four-cell one. On further increasing Gr beyond Gru, the four-cell
flow structure can be maintained. Similarly, by gradually reducing Gr below
Gru, the four-cell structure may persist until a second lower critical value Gr` is
reached. In this case, a hysteresis loop is present and dual solutions exist for
Gru > Gr > Gr`.
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With regard to the results of Figure 5, it can be seen that only the lower critical
Grashof number Gr` was obtained and that the hysteresis loop was not
detected. As the upper critical Grashof value Gru was not reached, the four-
vortex solution could not be established as a unique flow structure. In order to
trigger such a solution for air in a horizontal tube at some high Grashof
number, say Gr = 107, we used the pure forced flow solution as the starting
condition at the beginning of the iterative procedure for that particular Grashof
number. This approach led to a four-vortex converged solution which could
then be used as an initial guess leading to four-cell structures for slightly
different sets of the three controlling parameters Pr, Gr and �.

4.2 Effect of the tube inclination
The presence of a buoyancy force component along the axial direction
complicates the mixed convection flow field. For the two-vortex solution it has
been reported that the maximum axial velocity occurs below the tube axis for
horizontal (Figure 3a) and nearly horizontal tubes while in the case of steeply
inclined tubes this maximum may be located well above the axis (Orfi et al.,
1993; Orfi, 1995). Furthermore, the local wall shear stress varies considerably
along the tube perimeter. For horizontal tubes, the product � . Re is more
important in the lower part of the wall while for steeply inclined tubes the
reverse has been observed. In general, the circumferentially averaged value of
the product � . Re increases appreciably with increasing tube inclination (Orfi et
al., 1993). In this section, the effects of the tube inclination on the flow
bifurcation will be discussed. To the authors' knowledge, these effects have not
been reported in the literature for any thermal boundary condition.

Figure 6 shows the secondary flow patterns corresponding to the two- and
four-vortex structures for Pr = 7, Gr = 106 and four different tube inclinations.
It is observed that, for the two-cell structure, the intensity of the buoyancy-
induced secondary motion changes significantly with �. In fact, based on the
maximum value of the stream function this secondary motion reaches a
maximum intensity for a tube inclination close to 40ë (see also discussion by
Orfi et al. (1993)). The position of the vortex center moves slightly upwards and
away from the tube wall as � increases. For � = 80ë, the flow field is nearly
symmetrical with respect to the horizontal diameter � � ÿ�=2; �=2. In the case
of the four-vortex structure, we notice once again that ± based on the difference
between the extreme values of the stream function ± the secondary motion
intensity is maximum for a tube inclination close to 40ë. The lower cells
increase slightly with an increase of the tube inclination, thus forcing the upper
cells to move upwards.

The influence of the tube inclination on the thermal field and on the axial
velocity contours for the four-vortex structure is illustrated in Figure 7. It is
observed that thermal stratification, expressed by the difference between the
extreme fluid temperatures, decreases with an increase in �. This behavior,
which results from the decrease of the cross-sectional effects of buoyancy with
increasing tube inclination, is similar to that observed by Orfi et al. (1993) for
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the two-vortex structure. Owing to the increase in size of the lower cells, the
isotherms become very distorted in the lower part of the tube, in particular for
steeply inclined tubes. From Figure 7, it can also be observed that, in contrast
to the case of horizontal tubes, the region of high axial velocities is located
above the horizontal diameter. In fact, the position of the maximum axial
velocity moves upwards as � increases. This tendency results from the effects
of the buoyancy force, which has components in both the axial and transverse
directions for inclined tubes. The same tendency has also been reported
previously for the two-vortex structure by Orfi et al. (1993) and by Laouadi et
al. (1994).

It should be pointed out that for a vertical tube the calculated flow field,
which is not reproduced here, is independent of the angular coordinate �. For
this particular inclination the radial and tangential velocity components are
zero and, therefore, there is no motion in a cross-section perpendicular to the
tube axis.

Figure 8 shows the angular variation of the local Nusselt number for the two
flow structures and different tube inclinations. It is observed that over a large part
of the wall (for � between 0 and approximately 2.4) the local heat transfer
coefficient increases with�and is essentially not influenced by the flow structure.
For �> 2.4, however, Nu� for the four-vortex structure is considerably lower than
that for the two-vortex structure. This behavior is due to the effect of the counter-
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rotating lower eddies which move cold fluid from the central region towards the
cold bottom part of the tube. Thus, for inclined tubes, the two-vortex structure
provides an improved heat transfer performance.

Further information concerning the effects of flow bifurcation with respect
to the tube inclination is provided in Figures 9 and 10. Figure 9a, which shows
the variation of the circumferentially averaged wall shear stress with �,
indicates that the four-cell structure results in slightly higher flow resistance.
Figure 9b, which shows the variation of the similarly averaged Nusselt
number, shows that the influence of flow structure on this parameter is not
particularly important. On the other hand, Figures 10a for water and 10b for
air, showing the axial velocity along the tube axis as a function of tube
inclination, indicate that this velocity is significantly influenced by the
secondary flow structure. However, the most important information in Figures
9 and 10 is the fact that dual solutions exist only for � between 0ë and a critical
value �c. Above �c, only the two-vortex solution has been obtained. This
critical tube inclination depends strongly on the Prandtl number. Thus, for the
Grashof number under consideration (Gr = 106) �c is situated within the
intervals (62ë, 63ë) and (83ë, 84ë) for air and water respectively. It is interesting
to notice that the range of angle inclinations with a unique solution (two-vortex
in this case) decreases as the Prandtl number increases due to the decrease in
the thickness of the thermal boundary layer mentioned earlier.

4.3 Effects of the Prandtl number
The effects of Pr on the flow structure are examined in Figure 11, which shows
the variation of the axial fluid velocity along the tube axis for Gr = 106 and two
tube inclinations. It is observed that dual solutions coexist for both tube
inclinations over the entire range of Prandtl values considered. It should be
noted that for the high heating rate under consideration and for � = 60ë the
calculated value for the two-cell structure is higher than 2.0, which is the
corresponding value for pure forced flow.

The influence of the Prandtl on the circumferentially averaged Nusselt
number and wall shear stress is illustrated in Figure 12 for � = 0ë and � = 60ë.
An increase of Pr results in an appreciable enhancement of the heat transfer
coefficient, in particular for steeply inclined tubes. For horizontal tubes this
effect is less important. This behavior can be explained by noting that for
horizontal flows the temperature stratification in the upper part of the tube is
very important, especially for high Grashof numbers. The difference between
the results corresponding to two- or four-vortex structures is more significant
for � = 60ë. Concerning the effect of Pr on the wall shear stress (Figure 12b) it is
observed that the latter decreases as Pr increases. Once again the difference
associated with the secondary flow structure is more important for � = 60ë.

The arrows on the curves of Figures 11 and 12 indicate that the solutions for
the two-vortex structure were obtained by gradually increasing the Prandtl
number, while those for the four-vortex structure were obtained by gradually
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decreasing it. This procedure was used in an unsuccessful attempt to detect the
existence of upper or lower critical values of Pr beyond which only one of these
two secondary flow structures would exist.

5. Evaluations and discussion of results
As already mentioned, the results presented in the previous section were
calculated based on the assumption of fully developed flow (i.e. using the
conditions expressed by equations (2)). In order to better understand the
phenomenon of flow bifurcation, we have also attempted to determine whether
it could occur in a developing flow. In other words, we were interested to
investigate how the secondary flow evolved in the entrance region of the tube
and whether, for example, the four-vortex structure always occurred after
transition from a two-vortex one. For this purpose we have considered the
problem of the hydrodynamically and thermally developing laminar mixed
convection flow in inclined tubes subject to a uniform heat flux condition at the
wall-fluid interface. The axial velocity and temperature profiles were assumed
uniform at the tube inlet (Z = 0) and the condition of symmetry about the
vertical diameter was also used.

A modified version of the Patankar-Spalding method for three-dimensional
axially parabolic flows (Orfi et al., 1994; Orfi, 1995) was then used to calculate
the developing temperature and velocity fields for many different combinations
of the four governing parameters. The calculations were carried out over a tube
length sufficient to attain fully developed flow conditions. All the results thus
calculated correspond to a two-vortex secondary flow structure (Orfi et al.,
1997). We even tried to perturb the developing flow field by imposing a four-
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vortex solution at every axial cross-section in the entrance region of the tube.
This imposed four-vortex solution corresponds to the fully developed flow of
air at Gr = 106 in a horizontal tube. However, this perturbation did not have any
influence on the resulting secondary flow structure after convergence. The two-
vortex structure was consistently recovered and we were never able to obtain
the four-vortex solution after convergence. This interesting behavior of the
solution, i.e. convergence to the two-vortex solution after being perturbed,
indicates that the two-cell structure is the only stable flow structure.

This last conclusion is supported by experimental evidence. So far all
experimental investigations have confirmed the existence of the two-vortex
flow structure. To the best of our knowledge, there is no experimental evidence
for the existence of the four-vortex flow structure for the problem studied here.
In fact, such an experimental confirmation cannot be based on the most
commonly reported data which concern the circumferentially averaged Nusselt
number since this parameter does not vary much with the secondary flow
structure. The only easily measured variables which are significantly
influenced by this flow structure are the axial velocity and temperature profiles
for tube inclinations below the critical angle �c (see Figures 3, 10 and 11).
However, since very few experimental studies report such profiles and no
one has specifically studied this issue experimentally for mixed convection,
it is impossible to dismiss the four-vortex structure as a physically possible
secondary flow field for such flows. Indeed, by analogy to other flows with
well documented bifurcation characteristics (such as the Taylor and Dean
problems) such a structure for the present problem must be accepted as
plausible.

6. Conclusions
The problem of bifurcation for fully developed laminar mixed convection of a
Boussinesq fluid within inclined tubes subject to a uniform wall heat flux has
been investigated numerically with respect to the tube inclination �, the
Grashof number Gr and the Prandtl number Pr. Dual solutions with a two- and
four-vortex secondary flow structure in a cross-section normal to the tube axis
have been found for different combinations of � and Gr for all Prandtl numbers
between 0.7 and 7. State diagrams for the axial velocity and temperature
indicate that these variables are considerably influenced by the secondary flow
structure. On the other hand, global quantities such as the circumferentially
averaged Nusselt number and wall shear stress are essentially insensitive to
the secondary flow structure.

For relatively low heating rates (i.e. for Gr below a critical value Gr` which
increases with decreasing Pr) and for steeply inclined tubes (i.e. for tube
inclinations above a critical value �c which increases with increasing Pr) only
the two-vortex solution exists. Numerical experiments carried out for
developing flows indicate that the two-vortex structure is the only stable
solution.
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